CSC D70:

Compiler Optimization
Static Single Assignment (SSA)

Prof. Gennady Pekhimenko
University of Toronto
Winter 2020

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

From Last Lecture

* What is a Loop?

* Dominator Tree

* Natural Loops

* Back Edges

Finding Loops: Summary

* Define loops in graph theoretic terms
* Definitions and algorithms for:

— Dominators
— Back edges
— Natural loops

Finding Back Edges

e Depth-first spanning tree
* Edges traversed in a depth-first search of the flow graph form a
depth-first spanning tree

e Categorizing edges in graph

* Advancing (A) edges: from ancestor to proper descendant
e Cross (C) edges: from right to left
* Retreating (R) edges: from descendant to ancestor (not necessarily proper)

Back Edges

Definition
— Back edge: t->h, h dominates t
Relationships between graph edges and back edges

Algorithm

— Perform a depth first search
— For each retreating edge t->h, check if h is in t's dominator list

Most programs (all structured code, and most GOTO
programs) have reducible flow graphs

— retreating edges = back edges

"’"\‘
|\.l /’
o
il

X

Y
D__®

A nonreducible flow graph

Examples

G&_,/ R.~™3 2)
b " i
\\{‘J o W =
D) 6
/"\.4]
R S R

All the retreating edges
are back edges

Constructing Natural Loops

* The natural loop of a back edge is the smallest set of nodes that
includes the head and tail of the back edge, and has no predecessors
outside the set, except for the predecessors of the header.

* Algorithm
* delete h from the flow graph

 find those nodes that can reach t
(those nodes plus h form the natural loop of t -> h)

3 4 K
5 6

Inner Loops

* |f two loops do not have the same header:
— they are either disjoint, or
— one is entirely contained (nested within) the other
* inner loop: one that contains no other loop.

* If two loops share the same header:
— Hard to tell which is the inner loop
— Combine as one

Preheader

* Optimizations often require code to be executed
once before the loop

* Create a preheader basic block for every loop

header

CSC D70:

Compiler Optimization
Static Single Assignment (SSA)

Prof. Gennady Pekhimenko
University of Toronto
Winter 2020

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

Where Is a Variable Defined or Used?

* Example: Loop-Invariant Code Motion ¢
— Are B, C, and D only defined outside the loop? o
— Other defi.nit‘ions of A ins;de the loop? A=RB+C
— Uses of Ainside the loop: E =2+ D

 Example: Copy Propagation L/¢

— For a given use of X:
* Are all reaching definitions of X:
— copies from same variable:e.g.,, X = Y X =Y

* Where Y is not redefined since that copy? /\

— If so, substitute use of X with use of ¥

W=X4+ 2

* It would be nice if we could traverse directly between related uses and def’s
— this would enable a form of sparse code analysis (skip over “don’t care” cases)

Appearances of Same Variable Name
May Be Unrelated

X,
Y

ol <

+ +
W -

>
n

> =
+ +
O Jd

* The values in reused storage locations may be provably
independent

— in which case the compiler can optimize them as separate values

* Compiler could use renaming to make these different versions
more explicit

Definition-Use and Use-Definition
Chains

X, =A +1
Y =X + B
/\

F = 2 F =3
X, =F +17
Cc =X, +0D

* Use-Definition (UD) Chains:
— for a given definition of a variable X, what are all of its uses?
* Definition-Use (DU) Chains:

— for a given use of a variable X, what are all of the reaching
definitions of X?

DU and UD Chains Can Be Expensive

foo(int i, int j) {

switch (i) { In general,

ase 0: x=3;break; N defs
M uses

= O(NM) space and time

}

One solution: limit each variable to ONE definition site

14

DU and UD Chains Can Be Expensive (2)

foo(int i, int j) {

switch (1) {
case 0: x=3; break;
case 1: x=1; break;
case 2: x=6;
case 3: x=7;
default: x = 11;
}
x1l is one of the above x’s
switch (j) {
case 0: y=x1+7;
case 1: y=x1+4;
case 2: y=x1-2;
case 3: y=x1+1;
default: y=x1+9;
}
One solution: limit each variable to ONE definition site

Static Single Assighment (SSA)

e Static single assignment is an IR where every variable is
assigned a value at most once in the program text

e Easy for a basic block (reminiscent of Value Numbering):
— Visit each instruction in program order:
* LHS: assign to a fresh version of the variable
* RHS: use the most recent version of each variable

a — X +y a <« x +y

b<—a+x b1<—a1+x
a b+ 2 q a2<—b1+2
a — ¢ + a a3<_c1+a2

What about Joins in the CFG?

c ~ 12 c, — 12
if (i) { if (i)

a — x +y

b - a+x /\
} else {

a b+ 2 bl -+y 2 .1
coy+1 17 2 = ¥

}
a—c¢c+ a

a4<—c?+a?

Use a notational fiction: a @ function

Merging at Joins: the @ function

C, < 12
if (1)

— .

b1<—al+x C<—y+1

®(a
@ (c,,
(b, ,?)
c, + a

| N

P O Q0 p
&N WoWw

The @ function

* @ merges multiple definitions along multiple
control paths into a single definition.

* At a basic block with p predecessors, there are p
arguments to the © function.

X — CD(xl, X

new X)

xl ’ eoe ’ p

1 1 4
e How do we choose which X. to use?

— We don’t really care!
— If we care, use moves on each incoming edge

19

“Implementing” ©

c1<_12

if (i)

— b + 2

Trivial SSA

* Each assignment generates a fresh variable.

* At each join point insert ® functions for all live variables.

=\ = .

Y « X y « 2 Y, < X, Y, « 2

N >~

Z —~y + Xx 2

Too many O functions inserted.

Minimal SSA

e Each assignment generates a fresh variable.

* At each join point insert @ functions for all live variables with
multiple outstanding defs.

Xx - 1 x1<—1
Y « X y « 2 Y, < X, Y, « 2
Z —~y + Xx — &)
Y3 yllY2

Another Example

a 0 al ~ 0
a, - ®(a
b — a + 1 c3 A
c—c+Db b2 —
a b * 2 C2 «
if a < N a, <
if a

Notice use of ¢
return c ot 1 return c,

When Do We Insert @?

If there is a def of a in block 5,
which nodes need a ©()?

When do we insert ©?

« Weinsert a @ function for variable A in block 7 iff: v f hd l= !
— A was defined more than once before J, l
* (i.e., Adefined in Xand Y AND X # Y) Q R
— There exists a non-empty path fromxtoz, P , ?\. —
— and a non-empty path fromy to z, Pyz, s.t.
. sz N pyZ ={z} Path Convergence

(Z is only common block along paths)
e z¢ qu orz¢ Pyr where P = qu — z and PyZ = Pyr >z
(at least one path reaches Z for first time)

* Entry block contains an implicit def of all vars

* Note:v=00(..)isadefofv

25

Dominance Property of SSA

* |In SSA, definitions dominate uses.
— If x. is used in x - O(..., x,, ...), then BB(x)

dominates it" predecessor of BB(PHI)

— Ifxisusediny & ... x...,, then BB(x) dominates
BB(y)

* We can use this for an efficient algorithm to
convert to SSA

26

Dominance

If there is a def of a in block 5,
which nodes need a ©()?

CFG D-Tree

x strictly dominates w (x sdom w) iff x dom w AND x # w

Dominance Frontier

The Dominance Frontier of a node x =
{w | xdom pred(w) AND !(x sdom w)}

CFG D-Tree

x strictly dominates w (x sdom w) iff x dom w AND x # w

28

Dominance Frontier and Path Convergence

If there is a def of ain block 5,

nodes in DF(5) need a ©() for a
29

Using Dominance Frontier to Compute
SSA

* place all ®()

e Rename all variables

Using Dominance Frontier to Place ®()

e Gather all the defsites of every variable

* Then, for every variable
— foreach defsite

* foreach node in DominanceFrontier(defsite)
— if we haven’t put @() in node, then put one in

— if this node didn’t define the variable before, then add this node to the
defsites

* This essentially computes the lterated Dominance
Frontier on the fly, inserting the minimal number
of ®() neccesary

31

Using Dominance Frontier to Place @()

foreach node n {
foreach variable v defined in n {
orig[n] U= {v}
defsites[v] U= {n}
}
}

foreach wvariable v {
W = defsites|[v]
while W not empty ({
n = remove node from W
foreach y in DF[n]
if y € PHI[v] {
insert “v — &(v,v,..)” at top of y
PHI[v] = PHI[v] U ({y}
if v € orig[yl: W=W U ({y}

Renaming Variables

Algorithm:

— Walk the D-tree, renaming variables as you go
— Replace uses with more recent renamed def

For straight-line code this is easy

What if there are branches and joins?
— use the closest def such that the def is above the use in the D-tree

* Easy implementation:
— for each var: rename (v)

— rename(v): replace uses with top of stack
at def: push onto stack
call rename(v) on all children in D-tree
for each def in this block pop from stack

Compute Dominance Tree

1
i <1 D-tree G
j <1
k -~ 0 e
k < 1007?

3 /\ e °
4
j < 207 return j e e a

34

Compute Dominance Frontiers
1 DFs
i1 0 }
J -1 {2}
k « 0 {2}
{}
{7}
k < 1007? {7} e G
{2}
3 /4\~

j < 20%? return j H a @

|T
No s, N B

35

Insert @()

DFs

{

2}
{2}
{}

7}
{7}
2}

N oo, WN e

orig[n]

{i,j,k}
{}
{} defsites[v]

{}
: {1}
{i,k} (156}

Uk}
0 k {1,5,6}

No s, WN B

vari: W={1}

var j: W={1,5,6}

DF{1} DF{5}

36

http://ppt/slides/slide35.xml

Insert @()

DFs
i~ 1 1 {
J ~ 1 2 {2}
k -0 3 {2}
N 4 {}
5 5 {7}
k < 1007 6 {7}
/\ 7 {2}
4
j < 207 return j
N DFs
5
j o« i 615 - k
k «k +1 k —« k + 2

orig[n]
1 {ijk}
2 {}
3 {} defsites[v]
4 {}
5 4k =
o {1,5,6}
6 Uk kK {1,5,6)
7 {} "

var j: W={1,5,6}

DF{1} DF{5}

37

http://ppt/slides/slide35.xml

O

~N ook, N R

DFs

{

2}
{2}
{}

7}
{7}
{2}

orig[n]
1 {ijk}
2 {}
3 {} defsites[v]
4 {} .
5 ik -
6 Gk} | {1,5,6,7}
- {}’ k {1,5,6}

var j: W={1,5,6,7}

DF{1} DF{5} DF{7}

38

http://ppt/slides/slide35.xml

O

N oo, WnN R

DFs

{

2}
{2}
{}

7}
{7}
2}

orig[n]
1 {ijk}
2 {}
3 {} defsites[v]
4 {} {1}
5 {jk}

: {1,5,6}

6 Ukl kK {1,56)
7 {} "

var j: W={1,5,6,7}

DF{1} DF{5} DF{7} DF{6}

39

http://ppt/slides/slide35.xml

[N
UL

j - ¢(JIJ)
7k < &(k,k)

~N oyl W N

DFs

{}

2}
{2}
{}

{7}
{7}
{2}

orig[n]
1 {ijk}
2 {}
3 {} Def sites[v]
4 {} .
5 ik -
: j {1,5,6}
6 Uk kK {156
70 t>6]

var k: W={1,5,6}

40

http://ppt/slides/slide35.xml

Rename Vars

/4\5 e <:>
return j
i
ok
—k + 2

41

http://ppt/slides/slide37.xml

Rename Vars

1 Jl<—1
k, — 0

3, - 2(3,,3,) (2)

> |k, - 2(k,, k)

k, < 100°?

L N OMO

return

/ j4 A ¢(j3/j5)

k, - ®(k,, k)

42

http://ppt/slides/slide37.xml

Computing DF(n)

o0

ndomb
Indom c

Computing DF(n)

o0
o

)

DF(a)

ndomb
Indom c

Computing the Dominance Frontier

The Dominance Frontier of a node x =

compute-DF(n) {w | x dom pred(w) AND !(x sdom w)}

S={}
foreach node y in succ[n]
if idom(y) #n
S=S U{y}
foreach child of n, c, in D-tree
compute-DF(c)
foreach w in DF[c]
if Indomw
S=S U {w}
DF[n] =S

45

SSA Properties

* Only 1 assignment per variable

e Definitions dominate uses

Constant Propagation

e If “vlc”, replace all uses of v with c
e If “v [D(c,c,c)” (each input is the same constant), replace all uses of v with
C
W [] 1list of all defs
while !'W.isEmpty ({
Stmt S [|] W.removeOne
if ((S has form “v || c”) ||
(S has form “v | &(c,..,c)”)) then {
delete S
foreach stmt U that uses v {
replace v with ¢ in U
W.add (U)

47

Other Optimizations with SSA

* Copy propogation
— delete “x & ®(vy,y,y)” and replace all x with y
— delete “x B y” and replace all x with y

* Constant Folding
— (Also, constant conditions too!)

48

Constant Propagation

. lll — 1
J, <1
Convert to SSA Form 1 k1 0

j2 A é(j4lj1)
k, « &(k,,k,)
k, < 100?

—

4 t
j, < 207 return

j4 A é(j31j5)

k, - &(k, k)

50

j4 A é(j_o’ljs)

k, - &(k, k)

51

j, — #(1,3,)

k, - &(k, k)

Not a very exciting result (yet)...

52

— Conditional Constant
f; - 1 Propagation

e Does block 6 ever execute?

e Simple Constant Propagation can’t tell

e But “Conditional Const. Prop.” can tell:

e Assumes blocks don’t execute until
proven otherwise

e Assumes values are constants until

proven otherwise

j, — #(1,3,)

k, - &(k, k)

53

Conditional Constant Propagation Algorithm

Keeps track of:

* Blocks
— assume unexecuted until proven otherwise
e Variables

— assume not executed (only with proof of assignments of a
non-constant value do we assume not constant)

— Lattice for representing variables:

T not executed

m we have seen evidence that the variable has been assigned a

-2 -1 01 2 constant with the value

V we have seen evidence that the variable can hold different

1 values at different times

Conditional Constant Propagation

55

56

Conditio

1

nal Constant Propagation

2
k, < 100?

k, — @(k,,

0)

o >

return 1

57

CSC D70:

Compiler Optimization
Static Single Assignment (SSA)

Prof. Gennady Pekhimenko
University of Toronto
Winter 2020

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

Backup Slides

